
Customer Profile Server REST API 
		
Version	History	
Date	 Export	Version	 Description	

7/19/17		 1.01	 Initial	Version	

		
Introduction	
REST	is	a	style	of	API	for	interaction	with	remote	services	designed	around	the	model	that	
underlies	the	web.	Interactions	are	based	on	the	CRUD	model,	where	the	operations	are	
represented	via	the	basic	HTTP	POST/GET/PUT/DELETE	operations.	This	allows	APIs	to	use	
standard	web	infrastructure,	both	for	development	and	operation.	For	example,	since	HTTP	is	
used	for	transport,	additional	firewall	openings	are	not	generally	required,	and	common	
hardware	and	software	for	HTTPS	connections	can	be	used	for	security.	
	
Requirements	on	Requests	
As	noted	above,	requests	made	to	a	RESTful	API	are	ordinary	HTTP	requests.	There	are	however,		
two	header	requirements:	

The	HTTP	"Authentication"	header	must	contain	a	“bearer	token”	created	via	OAuth	as	
described	below,	
The	“Content-type”	header	must	be	“application/json”	

	
Wrapper	
The	API	document	format	has	a	top	level	wrapper	which	provides	a	uniform	representation	for	
clients	to	retrieve	and	post	content,	and	helps	to	disambiguate	metadata	from	customer	data.	
	
Data	
Customer	data	is	wrapped	in	a	field	named	'data'	in	the	wrapper.	
	
Example	
HTTP/1.1	200	OK	
…headers…	
	
{	
	 …wrapper	data…	
	 "data"	:	…	
}	
		
Timestamps	
Timestamps	are	formatted	using	the	JavaScript-compatible	ISO	8601	format:	yyyy-MM-
dd'T'HH:mm:ss.SSSX	with	an	offset	of	0	(Z).	
	
	
	



Errors	
If	a	RESTful	operation	cannot	be	completed	successfully,	the	call	will	return	an	HTTP	error,	and	a	
JSON	object	containing	the	error	description.	
		
Example	
HTTP/1.1	404	Not	Found	
…headers…	
		
{	
	 "error":	{	
	 	 "description"	:	"account	not	found"	
	 }	
}	
	
	
Authentication	
REST	API	calls	are	protected	using	OAuth	2.0	tokens.	For	server	to	server	calls,	tokens	are	
obtained	by	submitting	a	request	to	the	/services/oauth/token	endpoint	using	the	client	
credentials	grant	type,	and	are	passed	as	Bearer	tokens.	
	
Example	token	request	
$	curl	--data	
"grant_type=client_credentials&client_id=6gsz65tSSUDKeM7P&client_secret
=oSOLAwb7yfNYi1nG"	https://profile.example.com/services/oauth/token	
{	"access_token":	
"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJodHRwOi8vbG9jYWwuc3RhZ
2UuY3JhaW5zZGV0cm9pdC5jb20vIiwiZXhwIjoiMTQ1NzEyMzEzNiIsIm5iZiI6IjE0NTcx
MjMxMjYiLCJpYXQiOiIxNDU3MTIzMTI2Iiwic2NvcGUiOiIifQ==.AWkxj6KIt30EqKpr8j
tFcZO_jLD6VUcjbLj3iEzc5Gg="	}	

	
	
Customer	Identifiers	
The	profile	server	uses	separate	customer	identifiers	for	each	client	to	prevent	clients	from	
tracking	customers	across	services;	additionally,	they	may	be	of	limited	duration.	
	
	

Customer	Profile	Information	
Creating	Customer	Profiles	
To	create	a	customer	profile,	customer	profile	information	is	POSTed	to	the	end	point	
/services/create:	
		

https://profile.example.com/services/create	

		



With	a	JSON	payload	of	profile	values:	
		
{	
	 "data":	{	
	 	 "email":	{	
	 	 	 "value":	"sandy@clickshare.com",	
	 	 	 "timestamp":	"2017-02-28T15:57:24.000Z"	
	 	 },	
	 	 "postalCode":	{	
	 	 	 "value":	"01002",	
	 	 	 "timestamp":	"2017-02-28T15:57:24.000Z"	
	 	 },	
	 	 "interestHorses":	{	
	 	 	 "value":	true,	
	 	 	 "timestamp":	"2017-02-28T15:57:24.000Z",	
	 	 	 "public":	true	
	 	 }	
	 	 "interestGolf":	{	
	 	 	 "value":	false,	
	 	 	 "timestamp":	"2017-02-28T15:57:24.000Z",	
	 	 	 "public":	true	
	 	 }	
	 }	
}	
	
The	request	will	result	in	either	a	response	containing	a	profile	home	customer	Id	,	or	a	response	
containing	an	error	if	the	payload	contains	invalid	profile	values.	
	
{	
	 "customerId":	"1a2b3c",	
	 "data":	{	
	 }	
}	
	
	
	
	
	
	
	
Updating	Customer	Profiles	
To	update	a	known	customer	profile,	the	customer	profile	information	is	PUT	to	the	end	point	
/services/update	with	the	profile	home	customer	Id:	
		

https://profile.example.com/services/update/1a2b3c	

	



With	a	JSON	payload	of	profile	values:	
	
{	
	 "data":	{	
	 	 "interestPolitics":	{	
	 	 	 "value":	true,	
	 	 	 "timestamp":	"2017-02-28T15:57:24.000Z",	
	 	 	 "public":	true	
	 	 }	
	 }	
}	
	
The	request	will	result	in	either	an	null	data	response,	or	a	response	containing	an	error	if	the	
payload	contains	invalid	profile	values.	
	
	
Customer	Engagement	
During	the	normal	interaction	between	the	customer	and	the	web,	the	customer's	actions	
provide	an	insight	into	their	interests,	and	clients	may	report	these	interactions	to	the	profile	
server	for	aggregation	and	analysis.	Engagement	actions	are	reported	with	a	POST	to	the	end	
point	/services/engagement	with	a	customer	id:	
	

https://profile.example.com/services/engagement/1a2b3c	

	

And	a	JSON	payload	of	profile	values	in	the	same	form	as	update:	
		
{	
	 "data":	{	
	 	 "interestPolitics":	{	
	 	 	 "value":	true,	
	 	 	 "timestamp":	"2017-02-28T15:57:24.000Z"	
	 	 }	
	 }	
}	
	
	
	

Member	Access	to	Customer	Information	
Obtaining	Customer	Aliases	
To	protect	customer	privacy,	when	a	member	transmits	a	customer	id	to	another	party,	the	
transmitting	member	must	obtain	an	alias	for	the	customer.	To	obtain	an	alias,	a	GET	request	is	
sent	to	the	/services/alias	end	point	with	the	member's	id	for	the	customer,	and	the	member	id	
for	the	receiving	party:	
	



https://profile.example.com/services/alias/1a2b3c/4d5e6f	

		
The	request	will	result	in	a	response	containing	a	customerId	for	the	specified	party:	
		
{	
	 "customerId":	"7g8h9i",	
	 "data":		{	
	 }	
}	
		
Aliases	have	a	limited	lifetime,	and	once	expired,	are	no	longer	valid.	
	
	
Lookup	of	Customer	Information	
Member	sites	may	retrieve	information	from	the	profile	service	store	for	their	own	use.	The	
information	retrieved	will	be	the	intersection	of	the	information	that	is	marked	as	sharable	in	
the	service	and	of	the	information	the	member	site	is	configured	to	receive.	Configuration	of	
this	information	is	performed	outside	of	the	API.	
	
To	query	the	customer	profile	server,	a	GET	request	is	submitted	to	the	end	point	
/services/lookup	that	identifies	the	customer	by	an	identifier:	
	

https://profile.example.com/services/lookup/1a2b3c	

		
The	request	will	result	in	a	response	containing	the	available	requested	data	with	associated	
timestamps:	
		
{	
	 "data":	{	
	 	 "email":	{	
	 	 	 "value":	"sandy@clickshare.com",	
	 	 	 "timestamp":	"2017-02-28T15:57:24.000Z"	
	 	 },	
	 	 "postalCode":	{	
	 	 	 "value":	"01002",	
	 	 	 "timestamp":	"2017-02-28T15:57:24.000Z"	
	 	 }	
	 }	
}	

	

	



Profile	Queries	
Profile	Query	Syntax	
The	syntax	of	profile	queries	is	made	up	of	name,	value	pairs.	Matches	are	scored	based	on	
quality.	Because	a	field	name	cannot	appear	more	than	once	in	a	JSON	object,	the	JSON	array	
syntax	is	used	if	a	field	can	match	more	than	one	value.	
		
Evaluating	Profile	Queries	
To	evaluate	a	potential	profile	queries,	you	can	PUT	a	candidate	query	to	the	end	point	
/services/query:	
		

https://profile.example.com/services/query	

		
With	a	JSON	containing	payload	of	the	query:	
		
{	
	 "data":	{	
	 	 "postalCode":	[	"01002",	"01003"	]	
	 }	
}	

		

The	request	will	result	in	either	a	scoring	of	the	number	of	customers	matching	at	a	particular	
confidence	levels,	or	a	response	containing	an	error	if	the	payload	is	invalid:	
		
{	

"data":	[	5,	10,	25,	25	]	
}	
		
Storing	Profile	Queries	
To	evaluate	a	potential	profile	queries,	you	can	POST	a	candidate	query	to	the	end	point	
/services/query	with	the	profile	query	name:	
		

https://profile.example.com/services/query/amherst	

		
With	a	JSON	payload	of	the	query:	
		
{	
	 "data":	{	
	 	 "postalCode":	[	"01002",	"01003"	]	
	 }	
}	



The	request	will	result	in	either	an	array	scoring	of	the	number	of	customers	matching	at	
particular	confidence	levels,	or	a	response	containing	an	error	if	the	query	already	exists	or	the	
payload	is	invalid:	
		
{	

"data":	[	5,	10,	25,	25	]	
}	
		
	
Removing	Stored	Profile	Queries	
To	remove	a	stored	profile,	a	DELETE	request	is	sent	to	the	end	point	/services/query/	with	the	
profile	query	name.	The	request	will	result	in	either	an	null	data	response,	or	a	response	
containing	an	error	if	the	profile	query	cannot	be	removed.	
		
Applying	Stored	Profile	Queries	
To	query	the	customer	profile	server,	a	query	is	PUT	to	the	end	point	/services/match		with	an	
appended	customer	identifier:	
		

https://profile.example.com/services/match/6w7x8y9z	

		
With	a	JSON	object	containing	an	array	of	stored	query	names,	and	a	payload	of	page	specific	
data.	If	the	array	is	empty	or	missing,	all	of	the	clients	stored	queries	are	consulted,	and	if	the	
payload	is	included,	the	attributes	override	the	customer's	profile	data	for	the	purpose	of	the	
query	scoring.	(e.g.,	if	a	page	is	an	article	about	politics,	when	placing	ads	on	the	page,	the	
profile	service	might	treat	the	customer	as	having	expressed	as	interest	in	politics	for	that	page):	
		
{	
	 "query":	[	"profile1",	"profile2"	],	
	 "data":	{	
	 	 "interestPolitics":	true	
	 }	
}	
		
The	request	will	result	in	a	response	including	a	scored	list	of	matched	profiles:	
		
{	
	 "data":		{	
	 	 "profile1":	93,	
	 	 "profile2":	21	
	 }	
}	

		

	


